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the performance of the model itself (11). 
Increasing clinician awareness of AI’s biases 
is critical, but this desire may be paradoxical: 
Knowing about biases in AI may result in 
less willingness to use AI-based recommen-
dations for patients that a clinician judges 
“different” from others. Assuming models 
are biased in terms of race or ethnicity, for 
example, could result in clinicians systemati-
cally overriding a model’s recommendation 
for that group of patients. 

Several strategies exist to identify and 
address latent biases. One strategy could 
involve providing clinicians with model-
specific, individual-level performance 
feedback regarding whether they tend to 
outperform or underperform it, or if they 
are systematically following or overriding 
a model only for certain patient groups. 
Individualized feedback has the potential 
to improve clinician performance (12). 
However, a challenge for assessing bias is 
that clinicians may not see sufficient num-
bers of patients in different groups to al-
low rigorous, stratified comparisons. 

Patients should be informed about the 
use of AI in their clinical care as a matter 
of respect. This includes general messag-
ing about the use of predictive algorithms, 
chatbots, and other AI-based technologies, 
and specific notification when new AI-
based technologies are used in their indi-
vidual care. Doing so may improve aware-
ness of AI, motivate conversations with 
clinicians, and support greater transpar-
ency around AI use. 

Exactly how much to disclose, and in what 
format, are unanswered questions that re-
quire additional research. There is a need to 
avoid AI exceptionalism—the idea that AI is 
riskier or requires greater protection, just be-
cause it is AI—and presently patients want to 
know more, not less (8). That other decisions 
relying on algorithms, such as clinical risk 
calculators or computer-aided radiographic 
or electrocardiogram interpretation, may 
not be routinely shared with patients is not 
an argument in favor of secrecy. 

Bias has not been a major aspect of drug 
and device regulations, which focus on 
overall safety and efficacy. Recent US pro-
posals could extend legal liability to phy-
sicians and hospitals, meaning they could 
be required to provide compensatory dam-
ages to patients or be subject to penalties 
for use of biased clinical algorithms; these 
could be applied to AI algorithms (13). 
However, the complexity of AI algorithms 
and persistent ethical disagreement over 
when differential performance by race or 
ethnicity equals true bias complicate liabil-
ity proposals. Drug and device regulatory 
agencies might consider making evalua-
tions of bias mandatory for approval (14). 

A first step could be requiring evaluations 
of differential performance and bias under 
different real-world assumptions in ap-
proval processes and other forums, such as 
in journal reporting of AI research. 

In addition, the gaze of AI should be 
turned on itself. This requires proactive, 
intentional development of AI tools to iden-
tify biases in AI and in its clinical imple-
mentation (15). AI may contribute to the 
emergence of biases, but it also has the po-
tential to detect biases and hence facilitate 
new ways of overcoming them. Open-source 
tools, such as AI Fairness 360, FairML, and 
others, show promise in helping research-
ers assess fairness in their machine learning 
data and algorithms. These tools can assess 
biases in datasets, predictive outputs, and 
even the different techniques that can be 
used to mitigate bias according to differ-
ent metrics of fairness. Their application to 
health care data and algorithms deserves 
rigorous scientific examination.

Implementation research is urgently 
needed to better understand the role of dif-
ferent contextual factors and latent condi-
tions in allowing biases to emerge. Exactly 
which patients may experience bias under 
which circumstances requires ongoing rig-
orous study. In AI, biased data and biased 
algorithms result in biased outcomes for 
patients, but so do unbiased data and al-
gorithms when they enter a biased world. 
All patients deserve to benefit from both 
fair algorithms and fair implementation. j
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SPECIAL SEC TION A MACHINE-INTELLIGENT WORLD 

PERSPECTIVE

Using machine 
learning to 
decode animal 
communication
New methods promise 
transformative insights and 
conservation benefits

By Christian Rutz1, Michael Bronstein2,3, 
Aza Raskin4, Sonja C. Vernes1,5, Katherine 
Zacarian4, Damián E. Blasi6 

 T
he past few years have seen a surge 
of interest in using machine learning 
(ML) methods for studying the be-
havior of nonhuman animals (here-
after “animals”) (1). A topic that has 
attracted particular attention is the 

decoding of animal communication systems 
using deep learning and other approaches 
(2). Now is the time to tackle challenges con-
cerning data availability, model validation, 
and research ethics,  and to embrace opportu-
nities for building collaborations across disci-
plines and initiatives.

Researchers must infer the meaning, or 
function, of animal signals through observa-
tion and experimentation (3). This is a chal-
lenging task, not least because animals use 
a wide range of communication modalities, 
including visual, acoustic, tactile, chemical, 
and electrical signals—often in conjunction, 
and beyond humans’ perceptive capabilities. 
Observational work focuses on recording the 
signals of interest as well as detailed contex-
tual information, including the identity, state, 
and behavior of both the senders and receiv-
ers of signals, their relationships and past in-
teractions, and relevant environmental con-
ditions. Some signal types may be produced 
only under certain circumstances, eliciting 
a specific behavioral response; a classic ex-
ample is a vervet monkey (Chlorocebus py-
gerythrus) giving an alarm call when it spots 
a predator, which causes group members to 
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seek shelter. Establishing such correlations 
enables the formulation of hypotheses about 
signal function that can then be tested exper-
imentally (e.g., with controlled playbacks).

Following this approach, decades of care-
ful research have produced major advances 
in understanding animal communication (3). 
But there are considerable challenges, such 
as avoiding anthropocentric biases in data 
collection and interpretation, processing 
ever-increasing volumes of data, charting the 
full complexity of animals’ signaling behav-
ior, and achieving comprehensive functional 
decoding. ML offers some potential solutions.

Animal signals can be investigated us-
ing a rich toolkit of increasingly powerful 
ML methods, which vary in their modeling 
objectives, data requirements, and reliance 
on expert annotation. This includes, among 
other approaches, supervised learning (e.g., 
for determining which features accurately 
predict human-labeled signal types) and un-
supervised and self-supervised learning (e.g., 
for discovering signal repertoires of an indi-
vidual, group, or population).

Self-supervised deep-learning methods (4) 
are of interest because they require neither 
annotated datasets nor predefining features 
that are potentially relevant for communica-
tion. They are also the basis of “foundation 
models,” which are capable of remarkable 
generalizations across tasks (5). For exam-

ple, large language models that have been 
trained to predict the next word from a given 
sequence of words can subsequently be used 
to carry out much more complex tasks, such 
as inferring the syntactic classes of, and rela-
tions between, linguistic units,  or generating 
realistic text (5).

Methods that can integrate different data 
modalities seem particularly promising for 
facilitating functional decoding because they 
can provide a fuller account of communi-
cation events. ML models have been devel-
oped that efficiently learn to link images to 
words, words to speech, and content across 
other modality combinations (5), and this ap-
proach could be applied productively to ani-
mal study systems, for example, by correlat-
ing vocalizations with specific behaviors. ML 
would effectively assist with the challenging 
task of detecting cross-modal associations 
(and structure) that can, in turn, inform the 
design of validation experiments to establish 
causality (see the figure).

Because many ML methods were originally 
developed for natural language processing, 
exciting avenues have started opening up for 
exploring the much-debated potential simi-
larities between human language and animal 
communication systems (6). Observations 
and experimental work suggest that at least 
some animals, such as southern pied bab-
blers (Turdoides bicolor), exhibit some of the 

order sensitivity and compositionality that 
are characteristic of human language (7). ML 
approaches could leverage large datasets to 
search for subtlety and complexity that elude 
traditional methods, potentially expanding 
the known set of communication features 
shared across divergent taxa.

There is a growing number of studies that 
are exploiting the potential of ML for inves-
tigating animal communication, including 
large collaborative initiatives, such as the 
Earth Species Project (ESP); Communication 
and Coordination Across Scales (CCAS); 
Vocal Interactivity in-and-between Humans, 
Animals and Robots (VIHAR); Interspecies 
Internet; and Project CETI (Cetacean 
Translation Initiative), which recently pro-
vided a detailed roadmap for ML-assisted 
work on sperm whale (Physeter macroceph-
alus) communication (2).  Although efforts 
to tackle this grand research challenge are 
clearly intensifying, the field faces at least 
two main data-related obstacles: Most 
methods require vast amounts of data (4), 
and recordings of a single modality (e.g., 
vocalizations) are insufficient for functional 
decoding; additional context is required, in-
cluding information on the animals’ behav-
ior and environment.

Large volumes of audio and video data are 
held in community-sourced archives (such as 
the Macaulay Library or xeno-canto), are be-
ing accumulated by passive recording arrays, 
or can be scraped from the internet. Mining 
these data sources will provide fascinating 
glimpses of the richness of animal communi-
cation, but on its own, such work is unlikely 
to achieve breakthroughs in decoding signal 
function. This is chiefly because robust in-
formation on the identities and states of the 
senders and receivers, and the specific com-
munication context, is usually lacking.

High-quality datasets are available for 
some taxa, enabling swift progress with 
core model-development objectives. But it is 
clear that community mobilization and ap-
propriate resourcing are required to ensure 
that species experts are fully involved in the 
annotation and interpretation of existing 
recordings and can lead targeted efforts to 
collect new data at scale, in both the labora-
tory and field. For wild animals, a range of 
methods can be used to collect suitable data-
sets, including observation of focal subjects, 
autonomous cameras and audio recorders, 
drones and robots, and animal wearables 
(bio-loggers). Some bio-logging devices can 
collect audio and body-motion data simul-
taneously for the same individual, providing 
valuable input for multimodal ML models 
(see the figure).

The journey could be the biggest reward. 
Training the lens of ML on a broad range of 
taxa will likely uncover surprising degrees 

Machine learning is helping to map and 
understand the vocal repertoire of tool-using 
Hawaiian crows (Corvus hawaiiensis).
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of previously hidden complexity in animals’ 
communicative behavior. Many of the species 
that appear to use only a handful of basic 
call types may turn out to possess rich vo-
cal repertoires, and those that are renowned 
for their sophisticated communication may 
be shown to be more impressive still. There 
are early indications of the discovery poten-
tial of ML, as highlighted by a recent study 
that explored individual and group differ-
ences in the vocal behavior of zebra finches 
(Taeniopygia guttata) (8).

The ability of ML to produce systematic 
inventories of vocal (or other signaling) out-
put across a diverse range of taxa will enable 
unprecedented comparative analyses, help-
ing researchers to pinpoint the evolutionary 
drivers, genomic signatures, life-history cor-
relates, and cognitive and sensory founda-
tions of different communication systems. 
At the same time, longitudinal recordings for 
individual subjects could reveal how commu-
nication skills arise and mature (9).

But perhaps most importantly, advances 
in this field could boost animal conserva-
tion and welfare. For example, in critically 
endangered species, such as the Hawaiian 
crow (Corvus hawaiiensis), comparisons 
with historical baseline data could generate 
a detailed record of how population bottle-
necks have altered vocal repertoires, po-
tentially leading to impoverished commu-

nicative capabilities (10); lost calls of high 
fitness relevance, such as those involved 
in foraging, courtship, or antipredator be-
havior, could then conceivably be reintro-
duced. Furthermore, there is increasing 
recognition that socially transmitted infor-
mation may affect population viability (11), 
as illustrated by foraging specializations 
in killer whales (Orcinus orca) (12). Where 
vocal dialects can be established as “cul-
tural markers,” ML approaches would en-
able automated mapping of social popula-
tion structure and identification of animal 
groups at risk of losing critical knowledge.

ML could also be used to identify animal 
signals that are associated with stress, dis-
comfort, pain, and evasion,  or with positive 
states, such as arousal and playfulness. This 
could provide momentum for improving 
the living conditions of livestock and other 
captive animals and may even enable the 
assaying of wild populations to measure the 
impact of anthropogenic stressors. Ecological 
“soundscape” analyses are, at present, largely 
focused on species detection, but it should be 
possible to listen in on animals’ welfare at the 
landscape level (13). This idea could be de-
veloped further by looking beyond communi-
cation, for example, by developing ML tools 
that can examine satellite-recorded animal 
movement tracks for signatures of disease, 
distress, or human avoidance.

Despite manifold potential benefits, ML- 
assisted research on animal communica-
tion raises major ethical questions, such as 
under what circumstances it is acceptable 
to conduct playback experiments with wild 
animals. Advanced chatbots may enable re-
searchers to initiate communication with 
animals before signal function is fully under-
stood, potentially causing unintended harm. 
For example, broadcasting vocalizations to 
wild humpback whales (Megaptera novae-
angliae) could inadvertently trigger changes 
in singing behavior on an ocean-basin scale. 
These issues must be tackled head-on and 
not as an afterthought. Cross-stakeholder 
consultation is urgently needed to develop 
best-practice guidelines and appropriate leg-
islative frameworks (14).

Other challenges and opportunities lie 
ahead. For example, it is important to coordi-
nate research efforts across existing initiatives 
and to enhance engagement of experts on 
animal communication, tracking, conserva-
tion, and welfare. Despite rapid technological 
advances, progress in this field will continue 
to depend on careful consideration of each 
study species’ biology, a detailed knowledge 
of communication contexts, and controlled 
behavioral experiments (3). This expertise 
is essential for informing and validating ML 
analyses and intensifying data interpretation 
and collection efforts. Professional societies 
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Using multimodal data and experiments to understand animal signals
Machine-learning (ML) methods can be used to integrate information on sender, receiver, and communication context, revealing patterns that may inform hypotheses 
about signal function and, in turn, the design of controlled experiments. ML-assisted research on animal communication will likely generate important benefits, such as 
improving animal conservation and welfare, but is not without its challenges; addressing ethical concerns is a top priority.
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and networks could help coordinate inclusive 
community-driven collaborations.

Workflows should be developed using 
study systems where data collection and ex-
perimental validation are relatively straight-
forward. In captive settings, researchers can 
ensure excellent experimental control as 
well as the highest ethical and welfare stand-
ards; good models include rodents, bats, 
and birds. Such work can be complemented 
with analyses of extensive field datasets 
that are already available for some species. 
Once methods have been established, they 
can be cautiously applied to the considera-
bly more challenging problem of studying 
difficult-to-observe wild animals.

Present developments in ML are exception-
ally fast paced. Beyond the use of deep-learn-
ing methods, there is scope for trialing other 
ML frameworks, such as reinforcement learn-
ing and meta-learning (i.e., learning from the 
output of other ML models). As models are 
developed, formal “benchmarking” will be 
key to improving the reliability and efficiency 
of analysis pipelines (15), although safeguards 
must be put in place to prevent the misuse of 
open resources, such as attempts to disturb, 
kill, or weaponize animals.

ML holds the potential to generate trans-
formative advances in our understanding 
of animal communication systems, uncov-
ering unimagined degrees of richness and 
sophistication. But it is essential that future 
advances are used to benefit the animals be-
ing studied. j
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Do we want less automation?
AI may provide a path to decrease inequality

By Ajay Agrawal, Joshua S. Gans, 
Avi Goldfarb

I
mpressive achievements made through 
artificial intelligence (AI) innovations 
in automating the tasks required in 
many jobs have reinforced concerns 
about labor market disruption and in-
creased income inequality. This has mo-

tivated calls for change in the direction of 
AI innovation from being guided by task 
automation to instead focusing on labor 
augmentation (1). But task automation and 
labor augmentation are not polar oppo-
sites. Instead, automation of some tasks can 
lead to augmentation of labor elsewhere. 
Furthermore, AI automation may provide 
a path to reversing the trend of increas-
ing income inequality by enabling dispro-
portionate productivity improvements for 
lower-wage workers, allowing them to per-
form at levels that would previously require 
years of education and experience.

People have worried about automation—
using machines to do the work that humans 
do—for centuries. Over that time, automa-
tion has proceeded apace, with entire sec-
tors such as agriculture and manufacturing 
going from majority to minority shares of 
employment in many countries. Despite 
these sweeping changes, continual pro-
ductivity improvements have not brought 
about technological unemployment. There 
has always been more for people to do, 
even if the fruits of economic growth have 
in recent times not lifted the incomes of all 
(2). Nonetheless, with the accelerated pace 
of innovations in AI technologies that spe-
cifically target the automation of cognitive 
rather than physical labor, many econo-
mists have become concerned that this time 
will be different, leading to substantial dis-
ruption and increased inequality but with 
little benefit to productivity and standard of 
living (3, 4). 

The economic history of the internet 
and computing over the past 50 years sug-
gests that worries about inequality are not 
unfounded. These were what economists 
call skill-biased technologies (5), placing 
increasing demands on the skill, educa-
tion, and know-how of the workforce. As 
computers and the internet diffused in the 

decades after 1980, demand for skills grew 
faster than supply, and inequality increased 
because of the disproportionate increase in 
wages for high-skilled workers. 

More recently, consider all of the new 
products based on generative AI that auto-
mate the tasks of reading, writing, editing, 
summarizing, composing music, creating 
images, synthesizing speech, translating 
languages, programming computers, and 
producing videos. In each case, they prom-
ise time-saving productivity boosts by sub-
stituting capital (hardware or software) 
for the labor time that would otherwise be 
devoted to such tasks. If a machine can do 
these tasks, what will become of the people 
who did them previously? What if, instead 
of seeking to automate existing tasks, the 
mindset of the innovators was to provide 
tools that make existing workers more pro-
ductive in their current jobs?

AUTOMATION AND AUGMENTATION
Automation and augmentation need not be 
opposites; the economic definitions of each 
are not presented as such. Economists study-
ing automation consider a job to be a col-
lection of tasks [as developed in (4, 6) and 
applied in (7-9)]. Automation occurs when 
a machine (capital) is substituted for labor 
performance of one or more tasks in a work-
flow. This will typically increase productiv-
ity, which determines long-term economic 
growth and the average standard of living. 
With technological innovation having long 
been recognized as a key source of produc-
tivity growth, there is close to a consensus 
among leading economists that AI-driven 
technological change is likely to increase 
productivity, economic growth, and the av-
erage standard of living (10). However, if 
workers are replaced by machines, then this 
improved productivity can come at a sub-
stantial cost to displaced workers.

If technology creates new tasks, then 
displaced workers can find new things to 
do (4). Augmentation can therefore be seen 
as the development of new tasks (3), par-
ticularly if those tasks complement exist-
ing human labor (1). There is a challenge, 
however, in identifying such tasks and de-
termining which inventions are likely to 
lead to their development. The difficulty is 
that one person’s automation is another’s 
augmentation. Automating one task may 
create even more new tasks. 
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